M ar 2 00 8 BANACH SPACES WITH RESPECT TO OPERATOR - VALUED NORMS
نویسنده
چکیده
We introduce the notions of L(H)-valued norms and Banach spaces with respect to L(H)-valued norms. In particular, we introduce Hilbert spaces with respect to L(H)-valued inner products. In addition, we provide several fundamental examples of Hilbert spaces with respect to L(H)-valued inner products.
منابع مشابه
Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions
We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.
متن کاملar X iv : 0 80 5 . 01 58 v 1 [ m at h . FA ] 1 M ay 2 00 8 OPERATOR - VALUED DYADIC BMO SPACES
We consider BMO spaces of operator-valued functions, among them the space of operator-valued functions B which define a bounded paraproduct on L(H). We obtain several equivalent formulations of ‖πB‖ in terms of the norm of the ”sweep” function of B or of averages of the norms of martingales transforms of B in related spaces. Furthermore, we investigate a connection between John-Nirenberg type i...
متن کاملar X iv : m at h / 02 02 07 3 v 1 [ m at h . FA ] 8 F eb 2 00 2 UNIFORMLY CONVEX OPERATORS AND MARTINGALE TYPE
The concept of uniform convexity of a Banach space was generalized to linear operators between Banach spaces and studied by Beauzamy [1]. Under this generalization, a Banach space X is uniformly convex if and only if its identity map IX is. Pisier showed that uniformly convex Banach spaces have martingale type p for some p > 1. We show that this fact is in general not true for linear operators....
متن کاملQuasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions
We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...
متن کاملar X iv : 1 61 1 . 01 35 5 v 1 [ m at h . FA ] 4 N ov 2 01 6 Disjointness preserving C 0 - semigroups and local operators on ordered Banach spaces
We generalize results concerning C0-semigroups on Banach lattices to a setting of ordered Banach spaces. We prove that the generator of a disjointness preserving C0-semigroup is local. Some basic properties of local operators are also given. We investigate cases where local operators generate local C0-semigroups, by using Taylor series or Yosida approximations. As norms we consider regular norm...
متن کامل